
LLNL-CONF-442476

Verification for Portability,
Scalability, and Grokkability

A. Humphrey, C. Derrick, B. Tibbits, A. Vo, S.
Vakkalanka, G. Gopalakrishnan, B. de Supinski, M.
Schulz, G. Bronevetsky

July 15, 2010

EC2 Workshop
Edinburgh, United Kingdom
July 15, 2010 through July 19, 2010



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Verification for Portability, Scalability, and Grokkability

Alan Humphrey1, Christopher Derrick1, Beth Tibbitts2,
Anh Vo1, Sarvani Vakkalanka1, Ganesh Gopalakrishnan1,

Bronis R. Supinski3, Martin Schulz3 and Greg Bronevetsky3
1 School of Computing, University of Utah, UT, USA

2IBM Corp., Coldstream Research Campus, Lexington, KY
3Lawrence Livermore National Laboratory, Livermore, CA

The Message Passing Interface (MPI) API is widely used in al-
most all high performance computing applications. Yet, conven-
tional debugging tools for MPI suffer from two serious drawbacks:
they cannot prevent the exponentially growing number of redun-
dant schedules from being explored; and they cannot prevent the
processes from being locked into a small subset of schedules, un-
fortunately often reaching the potentially buggy schedules only
when programs are ported to new platforms.

Dynamic verification methods are the natural choice for debug-
ging real-world MPI programs when model extraction and mainte-
nance are expensive. While many dynamic verification tools exist
for verifying shared memory programs, there have been no cor-
responding tools that support MPI – the lingua franca of parallel
programming.

Verification for Portability
While interleaving reduction suggests the use of dynamic partial or-
der reduction (DPOR), four aspects of MPI make previous DPOR
algorithms inapplicable: (i) MPI contains asynchronous calls that
can complete out of program order; (ii) MPI has global synchro-
nization operations that have weak semantics; (iii) the runtime of
MPI cannot, without intrusive modifications, be forced to pursue a
specific interleaving with non-deterministic wildcard receives; and
(iv) the progress of MPI operations can depend on platform de-
pendent runtime buffering, making bugs sometimes appear when
resources are added to boost performance.

We will describe a formal model for MPI, and introduces a
tailor-made notion of Happens-Before ordering for MPI functions.
The crucial feature of this Happens-Before relation is that it el-
egantly solves all these four problems. MPI dynamic analysis is
turned into a prioritized scheduling algorithm respecting MPI’s
Happens-Before.

We will describe three algorithms that have been demonstrated
in the context of a practical MPI dynamic verification tool called
ISP. The Partial Order avoiding Elusive Interleavings (POE) algo-
rithm is a simple prioritized execution of the MPI transitions and is
guaranteed to find all deadlocks, assertion violations and resource
leaks under zero buffering. POEOPT algorithm avoids many of the

redundant interleavings of POE by fully exploiting MPI’s happens-
before. Finally, the POEMSE algorithm discovers all possible min-
imal run-time bufferings that guarantee to discover bugs.

POEMSE’s slack analysis has minimal overheads, and offers
the power of verifying for safe portability by considering all rele-
vant bufferings that might exist in various platforms.

In effect a program is dynamically verified not just with
respect to the platform on which the tool is run, but also
with respect to all platforms.

Verification for Scalability
In order to make dynamic formal analysis tools practical, one must
first of all scale up their capabilities to handle realistically sized ex-
amples. These examples have enormous CPU and memory needs
that can be provided only by large clusters. In many cases it is im-
possible to (manually or automatically) downscale an MPI program
that has been designed for large problem sizes. Such programs are
often not well parameterized by having a few parameters that can
be down/up scaled in a predictable way. Often the parameters them-
selves are not known. Often the relationships between these param-
eters is not known. Even if these are known, there are bugs that tend
to show up (with respect to compilers, runtimes, etc.) only at scale.

Large applications are arrived at after a progression of
testing and growing smaller prototypes. Each step up in
problem-size requires optimizations. When the enhanced
application finally breaks, it is very difficult to roll-back to
a corresponding but downsized instance.

We achieve verification at scale by designing a new tool called
Distributed MPI Analyzer (DMA). DMA employs a new dis-
tributed algorithm for scheduling MPI formal analysis. It employs
piggyback messages that help track the causalities among the actual
MPI messages, and determines potential matches between MPI’s
non-deterministic operations. DMA allows MPI programs to be run
virtually at full speed, and on real cluster machines of upto 1000
cores, thus obtaining the CPU and memory scalability needed to
run large MPI applications. The versatile instrumentation frame-
work in DMA allows Fortran and C applications to be seamlessly
verified – another important requirement of MPI formal analysis.
DMA has been used to dynamically verify large MPI applications
in a fraction of time that ISP takes.

Verification for Grokkability
It is important that designers be able to drive formal verifica-
tion tools in the same context in which they launch jobs on
clusters and conduct performance simulations. Such abil-
ity to operate seamlessly will minimize mistakes and also



Figure 1. Analyzer View on ParMETIS

Figure 2. Happens-Before Viewer

encourage the use of formal analysis technologies. The in-
tegration has to occur in popular frameworks already being
developed.

Our recent work is on such an official release of ISP (and soon
DMA) as a plug-in architecture into the Eclipse Parallel Tools
Platform Version 3.0 released in December 2009.

The talk
Our talk will emphasize all these aspects of formal verification.
Details are at http://www.cs.utah.edu/fv

nijhuis2
Text Box
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.




